Success in Custom Silicon Accelerators

Broadcom and Deutsche Bank Custom Silicon Teach-In
April 19, 2022
Safe Harbor Statement

This presentation contains forward-looking statements that are based on current expectations and beliefs of Broadcom management, assumptions made by and information currently available to Broadcom management, current market trends and market conditions that involve risks and uncertainties, many of which are outside Broadcom’s and Broadcom management’s control, and which may cause actual results to differ materially from those statements. Many of these risks and uncertainties are and will be exacerbated by the COVID-19 pandemic and any worsening of the global business and economic environment as a result.

Our filings with the SEC, which you may obtain for free at the SEC’s website at https://www.sec.gov, discuss some of the important risk factors that may affect our business, results of operations and financial condition. Actual results may vary from the estimates provided. We undertake no intent or obligation to publicly update or revise any of the estimates and other forward-looking statements made in this presentation, whether as a result of new information, future events or otherwise, except as required by law.
Broadcom Speakers

Hock E. Tan
President & CEO

Frank Ostojic
SVP & GM, ASIC Products

Vijay Janapaty
VP & GM, Physical Layer Products
How Broadcom Became a Global Technology Leader
Category-Leading Franchises: 8 in 2009 → 22 Today

Revenue
($ in Billions)

18X Growth

<table>
<thead>
<tr>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.5</td>
<td>$2.1</td>
<td>$2.3</td>
<td>$2.4</td>
<td>$2.5</td>
<td>$4.3</td>
<td>$6.8</td>
<td>$13.2</td>
<td>$17.6</td>
<td>$20.8</td>
<td>$22.6</td>
<td>$23.9</td>
<td>$27.5</td>
</tr>
</tbody>
</table>

R&D
($ in Billions)

24X Growth

<table>
<thead>
<tr>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.2</td>
<td>$0.3</td>
<td>$0.3</td>
<td>$0.3</td>
<td>$0.4</td>
<td>$0.7</td>
<td>$1.0</td>
<td>$2.7</td>
<td>$3.3</td>
<td>$3.8</td>
<td>$4.7</td>
<td>$5.0</td>
<td>$4.9</td>
</tr>
</tbody>
</table>

177X Growth in Operating Profit from 2009 → 2021
Moore’s Law Has Ended!

Physical Scaling Has Flattened

- Moore’s Law
- Logic Density
- Memory Density

Power Density Continues to Increase

Source: Broadcom data and estimates
Need New Approaches to Chip Development

- **General Purpose Compute**
- **Discrete Building Block Components**
- **Software Offload**
- **Analog Integration**
- **Domain Specific Silicon Accelerators**
- **Custom Silicon SoCs**

Are We on a New Growth Trajectory?
Frank Ostojic – SVP & GM, ASIC Products
Vijay Janapaty – VP & GM, Physical Layer Products
Foundation for Successful Silicon Innovation

Broadcom IP Portfolio + Leading Process Technology Platform
Custom ASICs Heritage, 3 Decades of Custom ASICs Experience

Broadcom ASIC Products Division

- The combination of 3 large ASIC groups: **Avago + LSI + Agere**
- Has been developing Custom Silicon for over **30 years** across **10+ technology generations** (0.35um to 3nm)
Custom ASIC Revenue by End Market

Routing / Switching
($ in Millions)

Compute Offload
($ in Millions)

20% CAGR
Custom ASIC Revenue by End Market

($ in Millions)

FY12	FY13	FY14	FY15	FY16	FY17	FY18	FY19	FY20	FY21
$0 | $0 | $0 | $0 | $0 | $0 | $1,000 | $1,500 | $2,000 | $2,500

20% CAGR

- Compute Offload
- Routing/Switching
Broadest Silicon Capabilities

Architecture & Design
- System Knowhow
- Power Efficiency
- Design for Cost
- MCM/2.5D/3D Packaging
- Fast Ramp (NPI)
- Low DPPM Quality

Processing
- ARM CPUs
- DSP Cores
- Offload Engines
- Packet Processing
- Switching Cores
- Security Cores

Memory and Protocol
- Multiport SRAMs
- HBM I/F Cores
- DDR I/F Cores
- PCIe/CXL Cores
- SAS/SATA Cores
- Ethernet Cores

Signal Processing
- Analog VGA
- High Res ADC/DACs
- High-Rate ADC/DAC
- Modulation
- Filtering
- Error Correction

Connectivity
- PCIe SerDes
- SAS/SATA/FC SerDes
- Ethernet SerDes
- VSR SerDes
- MCM Chiplet
- High B/W Chiplet
Leading Edge Silicon Platform Cadence

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16nm Platform</td>
<td></td>
</tr>
<tr>
<td>7nm Platform</td>
<td></td>
</tr>
<tr>
<td>5nm Platform</td>
<td></td>
</tr>
<tr>
<td>3nm Platform</td>
<td></td>
</tr>
</tbody>
</table>

120 silicon tape outs per year (across all nodes, product lines)

Broadcom’s R&D Platform Scale Drives Innovation
Scale of the Broadcom ASIC Machine

- **Investment scale** enables the development of a new Technology **Platform** ~ every 2 years – in alignment with Foundry
- **R&D scale**, combined with **efficient design methodology**, enables the development of ~60 ASICs at a given time

- *Lead ASIC Tape-out*
- *Lead ASIC Production Release*

<table>
<thead>
<tr>
<th>Year</th>
<th>16nm (90+ ASICs)</th>
<th>7nm (40+ ASICs)</th>
<th>5nm (20+ ASICs)</th>
<th>3nm (10 ASICs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proven Methodology for Very Complex SoCs

A Predictable ASIC Machine

- Designs in future generations will **double** current complexity
- Packaging and thermal technology leadership → **integration in complex SoCs**

Design Parameters
- Die sizes of 600 to 800 mm²
- 60B – 110B+ transistors in core die
- 96 GB – 128 GB of HBM capacity
- ~30 Tb – 50 Tb of network bandwidth
- Multiple die integrated in 2.5D packaging technology
Packaging Technology Leadership

Increasing SoC design content and size, coupled with a slowing of silicon area scaling, has led to a renaissance in packaging technology.

Evolution of 2D Packages

- **Small 40 mm x 40 mm Monolithic Package**
- **Large 60 mm x 60 mm Monolithic Package**
- **Super Large 80 mm x 80 mm Multi-die Package**

Evolution of 2.5D, 3D Packages

- **Si Interposer up to 1600 mm², Package Size 80 mm x 80 mm**
- **Si Interposer up to 3200 mm², Package Size 100 mm x 100 mm**
- **Si Interposer up to 3200 mm², Stacked Die, Package Size 100 mm x 100 mm**
Hyperscale Accelerator Examples

- General Purpose Compute
 - CPUs/GPUs
- Software Offload
- Domain Specific Silicon Accelerators
- Custom Silicon

New Growth Market for Custom Silicon
AI Custom Silicon

1. Matrix multiply/accumulate (5nm/3nm Libs/memories)
2. Network connectivity (800 Gbps/1600 Gbps links)
3. Die-to-die interconnect (10+ Tbit/s)
4. High bandwidth memory (HBM2e/3)
5. Advanced packaging (2.5D CoWoS)
6. First to market, fast NPI
Domain Specific Architectures Outperform GPUs/CPUs

Google TPU4: Speedup over NVIDIA A100

- BERT: 10%
- ResNet: 74%
- DLRM: 55%
- SSD: 41%

Source: cloud.google.com

Broadcom AI ASICs in Production

- 2018: 3
- 2020: 5
- 2022: 9

Source: Broadcom internal data

Higher Performance and 20%+ Lower Area and Power
Datacenter Accelerators

Benefits: Virtualization, Video, Protocol, Security Offloads and DC Orchestration

1. Virtualization, security, protocol offload (5nm/3nm)
2. Video codecs offload (5nm/3nm)
3. High bandwidth memory (HBM2e or DDR5)
4. CPU subsystem (ARM)
5. Network connectivity (800G links)

Hardware Accelerators Replace Software/CPU
Horizontal Integration

Discrete Building Block Components

Discrete Analog ICs from Non-CMOS or Older Generation CMOS

Analog Integration

Custom Silicon SoCs

Integrated Analog in Leading Process Technology Node

Integration Drives Content Growth
5G Radio: Bandwidth Increase, Power & Cost Reduction

• Integrated DFE and AFE
• Direct RF, DSP centric AFE
• 5G-advanced support
• BW > 800 MHz, dual-band TRXs
• 25%+ FE power reduction
• Antenna weight reduction
• Radio SKU reduction

5G Operator CapEx and OpEx Reduction

DFE = Digital Front End
AFE = Analog Front End
BW = Bandwidth
TRX = Transceiver
5G Massive MIMO Radio Silicon

1. Power efficiency (5nm/3nm libraries/memory)
2. Data converter chip-let (5nm direct RF, 5G-Adv, 800 MHz+)
3. Die-to-die interconnect (high bandwidth, low power chip-lets)
4. Protocol and control plane (Integrated ARM & DSP subsystems)
5. Baseband connectivity (CPRI, eCPRI interfaces)

First to Market: Direct RF Data Converters in 5nm

Custom 5G Radio SoC Opportunity = $1.2B SAM in CY24*

* Based on Dell'Oro January 2022 and Broadcom estimates
Data Center Interconnect: Integrated PAM-4 DSP

PAM-4 DSP Opportunity = $800M SAM in CY24*

Integration Centric

Discrete DSP, TIA, and Driver
Higher Power Dissipation

Integrated DSP Solution
400G DR4 Module < 7W
800G DR8 Module < 14W

Integration Drives 25% Power Reduction

* Based on LightCounting September 2021 and Broadcom estimates
Transport and Routing Network (Coherent DSP)

Discrete DSP and ADC/DAC Silicon
Limited Form Factors, Higher Power

Coherent DSP Opportunity = $400M SAM in CY24*

* Based on Broadcom estimates
Key Takeaways

Hyperscale accelerators offload software complexity to custom ASICs

Integration of discrete analog ICs drives custom silicon content growth

Broadcom is the #1 custom ASIC provider in infrastructure

Broadcom has a rich heritage of successful execution

– Breadth of IP cores + leading edge silicon platform + proven design methodology